Note

Stiffness of the Master Equation for Low-Temperature Reaction Rates

Abstract

When the master equation is used to describe a chemical reaction taking place at very low temperature, severe cancellation problems are encountered in calculating the eigenvalue corresponding to the reaction rate. A computational strategy which overcomes this difficulty is presented.

1. Introduction

The difficulty of finding the smallest eigenvalue (corresponding to the reaction rate) of the master equation by standard numerical methods has been described in detail elsewhere [1]. An extreme example of this problem arises in the calculation of the rate of recombination of hydrogen atoms at $77^{\circ} \mathrm{K}$. The most reliable method for doing this [2] is to calculate the rate constant k_{d} for dissociation of H_{2} at $77^{\circ} \mathrm{K}$ and then to obtain the required recombination rate constant k_{r} from the rate quotient law, i.e., $k_{\mathrm{r}}=K_{c}^{-1} k_{\mathrm{d}}$, where K_{c} is the equilibrium constant for the reaction at that temperature. To find k_{d}, it is necessary to solve for the smallest eigenvalue of a reaction matrix which is of order about 170 : its eigenvalues generally span the range from about $10^{3} \mathrm{~s}^{-1}$ (vibrational relaxation rate) to about $10^{13} \mathrm{~s}^{-1}$ (a predissociation rate), but the smallest one, $\gamma_{0}=k_{\mathrm{d}}$ is about $1.2 \times 10^{-301} \mathrm{~s}^{-1}$ at this temperature [2].

There are two distinct numerical problems here. First, many computing machines can handle only rather small ranges of exponent, e.g., $10^{ \pm 38}$ on DEC machines, $10^{ \pm 78}$ on IBM machines, and so on; this difficulty is relatively easy to overcome by separating the number from its exponent, and by processing them separately where necessary in the calculation. The more fundamental problem is that of the word length of the machine, i.e., the number of significant figures available in its arithmetic instructions; as a consequence, conventional eigenvalue routines generally only give the smallest eigenvalue to about the same number of significant figures as if the sum of all the other eigenvalues had been subtracted from the trace. Our failure to solve this problem satisfactorily by using standard methods, e.g., Householder reduction followed by bisection or QR, Rayleigh Quotient iteration, inverse iteration, is documented in detail elsewhere [3, 4]; typically, if the temperature was chosen to be $2000^{\circ} \mathrm{K}$, where $\gamma_{0} \approx 5 \times 10^{-2} \mathrm{~s}^{-1}$, only two significant decimal places could be achieved when using double-length arithmetic on an IBM machine (i.e., about 16 significant figures per operation).

We discuss first some of the convergence properties of approximations to γ_{0}, the
eigenvalue of smallest numerical magnitude of a symmetric reaction matrix written in the form $[A+D]$, where A describes the internal relaxation processes and D is a diagonal matrix representing the reaction steps. Matrix A is symmetric, and has one zero eigenvalue by construction, with the corresponding eigenvector related to the Boltzmann equilibrium population distribution; the nonzero elements of D occur only in positions which project onto elements of this vector having exceedingly small numerical magnitude. We then suggest a strategy for use in practical reaction rate calculations, and demonstrate that it is effective by application to a realistic problem.

2. Approximations to γ_{0}

Some methods were developed in [5] to approximate the lowest eigenvalue of a matrix L expressible in the form $\left[\mu\left(1-p_{0}\right)+C\right]$ with $C \geqslant 0$ and μ being a constant; here, $p_{0}=S_{0}\left(S_{0}\right.$,), where (,) denotes the scalar product, and S_{0} is the eigenvector of A corresponding to its zero eigenvalue. In the following, we show that most of the results are valid even when $L=[A+D], A, D \geqslant 0, A S_{0}=0$. In order to avoid unneccessary complications in the exposition, we assume that γ_{0} is simple.

Consider the eigenvalue equation

$$
\begin{equation*}
\left[A+D-\gamma_{0}\right] \psi=0 \tag{1}
\end{equation*}
$$

With an arbitrary $\alpha>0$, (1) is equivalent to

$$
\begin{equation*}
\left[A+D+\alpha p_{0}-\gamma_{0}\right] \psi=\alpha p_{0} \psi \tag{2}
\end{equation*}
$$

Let $\sigma_{0}(L), \sigma_{1}(L)$ denote the lowest and the next lowest eigenvalue of L. Since $\sigma_{0}\left(A+\alpha p_{0}\right)=\alpha$ one has that $\sigma_{0}\left(A+D+\alpha p_{0}\right) \geqslant \alpha$. Thus, for large enough α, $\sigma_{0}\left(A+D+\alpha p_{0}\right)>\gamma_{0}$, implying that ($\left.u,\left[A+D+\alpha p_{0}-\gamma_{0}\right] u\right)>0$ for each u. Letting $u=\psi$, we have that $\left(\psi, p_{0} \psi\right)>0$, yielding also that $\left(S_{0}, \psi\right) \neq 0$. Since $\left[A+D+\xi p_{0}\right]$ is continuous in ξ, it has a continuous (normalised) eigenvector $v(\xi)$ such that $v(\xi) \rightarrow_{\xi \rightarrow 0} \psi$, where we take ψ to be normalised also. It follows from the HellmannFeynman theorem that

$$
\sigma_{0}\left(A+D+\alpha p_{0}\right)=\gamma_{0}+\int_{0}^{\alpha} d \xi\left(v(\xi), p_{0} v(\xi)\right) \geqslant \gamma_{0}
$$

Since $\left(v(0), p_{0} v(0)\right)=\left(\psi, p_{0} \psi\right)>0$ and $v(\xi)$ is continuous, however, the integral is strictly positive, yielding that $\sigma_{0}\left(A+D+\alpha p_{0}\right)>\gamma_{0}$ for each $\alpha>0$. Consequently, $\left[A+D+\alpha p_{0}-\gamma_{0}\right]^{-1}$ exists. Using further the fact that $\left(S_{0}, \psi\right) \neq 0$, (2) reduces to $\phi\left(\gamma_{0}\right)=1$, where

$$
\begin{equation*}
\phi(x)=\alpha\left(S_{0},\left[A+D+\alpha p_{0}-x\right]^{-1} S_{0}\right) \tag{3}
\end{equation*}
$$

It is clear that $\phi(x)$ is a well-defined positive function on $\left(-\infty, \sigma_{0}\left(A+D+\alpha p_{0}\right)\right)$ with $\phi(-\infty)=0$ and all of its derivatives are positive. It follows, as in [5], that γ_{0}
is the unique solution of $\phi(x)=1$ which can be approximated monotonically from above by Newton's method. To be precise, let $x_{m+1}=x_{m}+\left(1-\phi\left(x_{m}\right)\right) / \phi^{\prime}\left(x_{m}\right)$, $m=0,1,2, \ldots$, with $x_{0}<\sigma_{0}\left(A+D+\alpha p_{0}\right)$ such that $x_{1}<\sigma_{0}\left(A+D+\alpha p_{0}\right)$; then $x_{m} \downarrow \gamma_{0}$; here, the prime denotes the derivative.

Now, let $\bar{\phi}(x), \chi(x)$ be defined by

$$
\begin{equation*}
\bar{\phi}(x)=\alpha-(\alpha-x) \phi(x)=\alpha\left(S_{0},\left[A+D+\alpha p_{0}-x\right]^{-1} D S_{0}\right) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\chi(x)=\frac{\bar{\phi}(x)}{\phi(x)}=\frac{\alpha-(\alpha-x) \phi(x)}{\phi(x)}=\frac{(\alpha-x) \bar{\phi}(x)}{\alpha-\bar{\phi}(x)} \tag{5}
\end{equation*}
$$

It is obvious that $\phi(x)=1$ if and only if $\bar{\phi}(x)=x$ and $\chi(x)=x$; i.e., γ_{0} is the unique fixed point of $\bar{\phi}(x)$ and $\chi(x)$ in the interval of their definition. In the following, we show that $\chi(x)$ is independent of α.

If B is an invertible matrix and β is a constant, then

$$
\begin{aligned}
\left(S_{0},\left[B-\beta p_{0}\right]^{-1} S_{0}\right) & =\left(S_{0}, B^{-1}\left[1-\beta p_{0} B^{-1}\right]^{-1} S_{0}\right) \\
& =\left(S_{0}, B^{-1} S_{0}\right) /\left(1-\beta\left(S_{0}, B^{-1} S_{0}\right)\right)
\end{aligned}
$$

whenever the terms make sense. Setting $B=\left[A+D+\alpha p_{0}-x\right]$ and $\beta=(\alpha-x)$, we have that

$$
\begin{equation*}
\frac{1}{\chi(x)}=\frac{\left(S_{0},\left[A+D+\alpha p_{0}-x\right]^{-1} S_{0}\right)}{1-(\alpha-x)\left(S_{0},\left[A+D+\alpha p_{0}-x\right]^{-1} S_{0}\right)}=\left(S_{0},\left[A+D-\left(1-p_{0}\right) x\right]^{-1} S_{0}\right) \tag{6}
\end{equation*}
$$

It follows from (6) that $\chi(x)$ is a differentiable decreasing function of x. It is also clear that $\chi(x)>0$ for each $x \leqslant \gamma_{0}$; thus, it is positive for each $x<\xi_{0}$ with some $\xi_{0}>\gamma_{0}$, defined by $\chi\left(\xi_{0}\right)=0$. This is sufficient to establish the following result [6]: let $x_{m+1}=\chi\left(x_{m}\right)$ with $x_{0} \leqslant 0, x_{m}<\xi_{0}, m=0,1,2, \ldots ;$ then $x_{2 m} \uparrow y_{1} \leqslant \gamma_{0} \leqslant y_{2} \downarrow x_{2 m+1}$. The condition $x_{m}<\xi_{0}$ is equivalent to $\chi\left(x_{m+1}\right)>0$. If $\chi^{\prime}(x)<1$ on $\left(x_{0}, \xi_{0}\right)$, then $y_{1}=y_{2}=\gamma_{0}$. An alternative method, the min. max. method which was described in [5], enables one to obtain converging upper and lower bounds to γ_{0} even when $\chi^{\prime}(x) \geqslant 1$.

The results to this point are valid with an arbitrary p_{0} such that $\left(\psi, p_{0} \psi\right)>0$ and, in fact, for the special case where A is tridiagonal (e.g., for the so-called step-ladder model in unimolecular reaction theory), p_{0} can simply be taken as $S(S$, , where S is the vector $1,0,0, \ldots$.

We now consider the iterative sequence generated by $\bar{\phi}(x)$, i.e., $\left\{x_{m}\right\}$ defined by $x_{m+1}=\bar{\phi}\left(x_{m}\right)$ with x_{0} such that $x_{m}<\sigma_{0}\left(A+D+\alpha p_{0}\right)$. It is a standard result, again, that if $\bar{\phi}^{\prime}(x)<1$ on the interval containing $\left\{x_{m}\right\}$, then $x_{m} \rightarrow \gamma_{0}[7]$. Since

$$
\left|\bar{\phi}^{\prime}(x)\right|=\left|\alpha\left(S_{0},\left[A+D+\alpha p_{0}-x\right]^{-2} D S_{0}\right)\right| \leqslant \alpha\left\|D S_{0}\right\| /(\alpha-x)^{2}
$$

$\left|\bar{\phi}^{\prime}(x)\right|$ can be made arbitrarily small by increasing α; here $\|\cdot\|$ denotes the norm. Therefore, one can always obtain a convergent $\left\{x_{m}\right\}$. Furthermore, convenient bounds on $\left|\gamma_{0}-x_{m}\right|$ are available in terms of $\left.\mid \bar{\phi}^{\prime}\left(x_{m}\right)\right]$ [7]; however, here we show that if $0<\alpha<\sigma_{1}(A)$, then $x_{m} \uparrow \gamma_{0}$.

It is clear from (4), using $A S_{0}=0$, that

$$
\bar{\phi}(x)=\alpha\left(S_{0},\left[A+D+\alpha p_{0}-x\right]^{-1} P S_{0}\right)
$$

where $P=\left[A+D-\left(1-p_{0}\right) \alpha\right]$. Now, $\left(S_{0}, P S_{0}\right)=\left(S_{0}, D S_{0}\right) \geqslant 0$ and for any u orthogonal to $S_{0},(u, P u)=(u,[A+D-\alpha] u) \geqslant\left[\sigma_{1}(A)-\alpha\right](u, u)$; this is sufficient to conclude that $P \geqslant 0$ [5]. Hence $P^{1 / 2} \geqslant 0$ is well defined and commutes with $\left[A+D+\alpha p_{0}\right]$, which results in

$$
\begin{equation*}
\bar{\phi}(x)=\alpha\left(P^{1 / 2} S_{0},\left[A+D+\alpha p_{0}-x\right]^{-1} P^{1 / 2} S_{0}\right) \tag{7}
\end{equation*}
$$

From (7) it follows that $\bar{\phi}^{\prime}(x) \geqslant 0$, which is sufficient to imply that $x_{m} \uparrow \gamma_{0}$ provided that $x_{0} \leqslant \gamma_{0}[5]$.

It is pertinent to remark here that Newton's method may also be used to approximate the fixed points of $\bar{\phi}(x)$ and $\chi(x)$, i.e., γ_{0} [5].

3. The Computational Method

Since γ_{0} is pathologically small, we can safely choose the first approximation $x_{0}=0$. Equation (4) may then be written

$$
\begin{equation*}
\bar{\phi}(0)=\alpha\left(S_{0},\left[A+D+\alpha p_{0}\right]^{-1} D S_{0}\right)=\left(S_{0}, f\right) \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
f=\alpha\left[A+D+\alpha p_{0}\right]^{-1} D S_{0} \tag{9}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
\left[A+D+\alpha p_{0}\right] f=\alpha D S_{0} \tag{10}
\end{equation*}
$$

Forming the scalar product of S_{0} with (10), we have

$$
\begin{equation*}
\left(S_{0},\left[A+D+\alpha p_{0}\right] f\right)=\left(S_{0}, D f\right)+\alpha\left(S_{0}, f\right)=\alpha\left(S_{0}, D S_{0}\right) \tag{11}
\end{equation*}
$$

where we have used the fact that S_{0} is the normalised eigenvector of A corresponding to a zero eigenvalue. From (8) and (11), we then get

$$
\begin{equation*}
\bar{\phi}(0)=\left(S_{0}, f\right)=\left(S_{0}, D S_{0}\right)-\left(S_{0}, D f\right) / \alpha \tag{12}
\end{equation*}
$$

This we have shown to be a lower bound to γ_{0}, and the corresponding upper bound, from (5), is $\bar{\phi}(0) /(1-\bar{\phi}(0) / \alpha)$; in the example we give below, where $\alpha=1$ and
$\gamma_{0} \approx 10^{-50}$, the upper and lower bounds are computationally indistinguishable. The power of this method depends upon the fact that we have reduced the eigenvalue problem to an inversion, and that the inversion, Eq. (9), is stable.

4. A Simple Example

A model calculation was performed on the unimolecular dissociation of CO_{2} at $500^{\circ} \mathrm{K}$. The energy-level spectrum was divided into 40 equally spaced grains, with 30 of them below the reaction threshold, and appropriate values were assigned to the elements of A and D [6]; the elements of A are proportional to the pressure p, but those of D are fixed. With the numerical values assumed, 39 of the eigenvalues of A spanned the range $1.3 p \times 10^{5}$ to $6.6 p \times 10^{9} \mathrm{~s}^{-1}$, where p is the pressure in Torr; the remaining one is of course identically zero, with an eigenvector S_{0} whose elements are $\tilde{n}_{i}^{1 / 2}$, where \tilde{n}_{i} is the Boltzmann population in grain i at $500^{\circ} \mathrm{K}[6]$. We chose to experiment with the value of $\alpha=1$ and a pressure range $10^{-5} \leqslant p \leqslant 10^{20}$ Torr: thus α was always less than $\sigma_{1}(A)$, whence $\bar{\phi}(0)$ is always a lower bound; note that the (i, j) th element of p_{0} is simply $\tilde{n}_{i}^{1 / 2} \tilde{n}_{j}^{1 / 2}$. In the range $10^{-5} \leqslant p \leqslant 10^{-3}$ Torr, our calculated rate constant was strictly second order, with a numerical value of $3.024 p \times$ $10^{-46} \mathrm{~s}^{-1}$, whereas in the range $10^{8} \leqslant p \leqslant 10^{10}$ Torr, the rate constant was strictly constant at $8.960 \times 10^{-43} \mathrm{~s}^{-1}$. These limiting values are known to be correct, since they can be deduced analytically from the general properties of the theory of unimolecular reactions [6]. Moreover, throughout the pressure range $10^{-5} \leqslant p \leqslant 10^{10}$ Torr, $\bar{\phi}(0)$ exhibited the correct fall-off behaviour and no difficulty was experienced in calculating the rate constant at any of these pressures.

Some problems may be encountered at extremes of pressure. For example, at $p=10^{20}$ Torr and $\alpha=1$, the elements of αp_{0} become insignificant compared with the elements of A and the inversion of $[A+D]$ fails: however, the correct high-pressure rate constant is recovered if α is increased to, say, 10^{10}, since the inversion is now stabilised by the presence of a significant αp_{0} term; note that at these high pressures, a value of α of 10^{10} is still less than $\sigma_{1}(A)$. On the other hand, at extremely low pressures, the elements of A will become insignificant compared with those of D, and a solution can only be obtained if sufficient computer word length is available; however, this problem does not usually arise in chemical kinetic calculations. Finally, we should point out that if the computing system or compiler available is one which counts underflows and terminates the execution of the program if "too many" underflows occur, then it is necessary to intercept these interrupts in the inversion routine: we have found the Choleski square root method [8] very convenient in this respect for the calculation of f in Eq. (9). The number of underflows encountered is large, and depends upon the value of α that is chosen; however, we explored the behaviour of $\bar{\phi}(0)$ obtained from a fixed matrix $[A+D]$ by choosing widely differing values of α, and found that the result was unaffected to at least 5 significant figures as the number of suppressed underflows was varied.

Acknowledgment

This work was supported by the Natural Sciences and Engineering Research Council of Canada.

References

1. H. O. Pritchard, Specialist Periodical Rep., React. Kinet. 1 (1975), 243.
2. A. W. Yau and H. O. Pritchard, J. Phys. Chem. 83 (1979), 134.
3. D. L. S. McElwain, Ph. D. Thesis, York University, Toronto, 1970.
4. T. Ashton, Ph. D. Thesis, York University, Toronto, 1972.
5. S. R. Vatsya, J. Phys. A, in press.
6. S. R. Vatsya and H. O. Pritchard, Proc. Roy. Soc. London Ser. A 375 (1981), 409.
7. P. Henrici, "Elements of Numerical Analysis," Wiley, New York, 1964.
8. V. N. Faddeeva, "Computational Methods of Linear Algebra," Dover, New York, 1959.

Received: December 2, 1981; revised April 21, 1982
H. O. Pritchard and S. R. Vatsya

Centre for Research in Experimental Space Science, York University, Downsview, Ontario, Canada M3J 1P3

