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Note 

Stiffness of the Master Equation for 
Low-Temperature Reaction Rates 

When the master equation is used to describe a chemical reaction taking place at very low 
temperature, severe cancellation problems are encountered in calculating the eigenvalue 
corresponding to the reaction rate. A computational strategy which overcomes this difficulty 
is presented. 

1. INTRODUCTION 

The difficulty of finding the smallest eigenvalue (corresponding to the reaction 
rate) of the master equation by standard numerical methods has been described in 
detail elsewhere [ 11. An extreme example of this problem arises in the calculation of 
the rate of recombination of hydrogen atoms at 77OK. The most reliable method for 
doing this [2] is to calculate the rate constant k, for dissociation of H, at 77’K and 
then to obtain the required recombination rate constant k, from the rate quotient law, 
i.e., k, = K;‘kd, where Kc is the equilibrium constant for the reaction at that 
temperature. To find k,, it is necessary to solve for the smallest eigenvalue of a 
reaction matrix which ,is of order about 170: its eigenvalues generally span the range 
from about LO’s’ ( vibrational relaxation rate) to about 10i3s-’ (a predissociation 
rate), but the smallest one, y,, = k, is about 1.2 X 10-30’s-1 at this temperature [2]. 

There are two distinct numerical problems here. First, many computing machines 
can handle only rather small ranges of exponent, e.g., 1O*3* on DEC machines, 
lo*‘* on IBM machines, and so on; this diffkulty is relatively easy to overcome by 
separating the number from its exponent, and by processing them separately where 
necessary in the calculation. The more fundamental problem is that of the word 
length of the machine, i.e., the number of significant -figures available in its arithmetic 
instructions; as a consequence, conventional eigenvalue routines generally only give 
the smallest eigenvalue to about, the same number of significant figures as if the sum 
of all the other eigenvalues had been subtracted from the trace. Our failure to solve 
this problem satisfactorily by using standard methods, e.g., Householder reduction 
followed by bisection or QR, Rayleigh Quotient iteration, inverse iteration, is 
documented in detail elsewhere [3,4]; typically, if the temperature was chosen to be 
2000°K, where y o z 5 x 10-2s-‘, only two significant decimal places could be 
achieved when using double-length arithmetic on an IBM machine (i.e., about 16 
significant figures per operation). 

We discuss first some of the convergence properties of approximations to yo, the 
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eigenvalue of smallest numerical magnitude of a symmetric reaction matrix written in 
the form [A + D], where A describes the internal relaxation processes and D is a 
diagonal matrix representing the reaction steps. Matrix A is symmetric, and has one 
zero eigenvalue by construction, with the corresponding eigenvector related to the 
Boltzmann equilibrium population distribution; the nonzero elements of D occur only 
in positions which project onto elements of this vector having exceedingly small 
numerical magnitude. We then suggest a strategy for use in practical reaction rate 
calculations, and demonstrate that it is effective by application to a realistic problem. 

2. APPROXIMATIONS TO yO 

Some methods were developed in [5] to approximate the lowest eigenvalue of a 
matrix L expressible in the form [~(l -p,,) + C] with C > 0 and P being a constant; 
here, p,, = S&3,, ), where ( , ) denotes the scalar product, and S, is the eigenvector 
of A corresponding to its zero eigenvalue. In the following, we show that most of the 
results are valid even when L = [A + D], A, D > 0, AS, = 0. In order to avoid unnec- 
cessary complications in the exposition, we assume that y0 is simple. 

Consider the eigenvalue equation 

[A + D - y&u = 0. 

With an arbitrary a > 0, (1) is equivalent to 

(1) 

LA + D + a~, - ~olw = a~, VI. (2) 

Let o,(L), o,(L) denote the lowest and the next lowest eigenvalue of L. Since 
a,(A + ape) = a one has that a,(A + D + ap,)> a. Thus, for large enough a, 
u,(A + D + ape) > yo, implying that (u, [A + D + ap, - yo]u) > 0 for each u. Letting 
u = w, we have that (t,u, p. w) > 0, yielding also that (So, u/) # 0. Since [A + D + tp,] 
is continuous in <, it has a continuous (normalised) eigenvector v(r) such that 
43 41-0 w, where we take w to be normalised also. It follows from the Hellmann- 
Feynman theorem that 

oo(A + D + ape) = y. + Ia &(W ~~4t)) 2 yo. 
0 

Since W), pot@)) = (w,pow) > 0 and u(t) is continuous, however, the integral is 
strictly positive, yielding that u,(A + D + ape) > y. for each a > 0. Consequently, 
[A+D+ap,-y,]-’ exists. Using further the fact that (So, w) # 0, (2) reduces to 
#(yo) = 1, where 

$(x) = a@, , [A + D + ap, - x] - ’ So). (3) 

It is clear that #(x) is a well-defined positive function on (--co, u,(A + D + ape)) 
with #(--co) = 0 and all of its derivatives are positive. It follows, as in [5], that y,, 
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is the unique solution of 4(x) = 1 which can be approximated monotonically from 
above by Newton’s method. To be precise, let x,+ i =x, + (1 - #(x,,J)/#‘(x,J, 
m = 0, 1, 2 ,...) with x0 < o&4 + D + a~,,) such that xi < o&4 + D + a~,); then 
x, 1 y,, ; here, the prime denotes the derivative. 

Now, let J(x), x(x) be defined by 

and 

$(~)=a-(a-x)#(x)=a(S,, [A +D+ap,-xl-‘DS,) (4) 

&x> x(x)=((x)= a - (a - x> Q(x) = (a -xl 96) 
l(x) a-&(x) ’ 

(5) 

It is obvious that d(x) = 1 if and only if F(x) = x and x(x) =x; i.e., y,, is the unique 
fixed point of J(x) and x(x) in the interval of their definition. In the following, we 
show that x(x) is independent of a. 

If B is an invertible matrix and j3 is a constant, then 

(So, [B--PO]-‘S,)=(S,,B-‘[I -PP,$-‘l--o) 

= (S,,B-‘Sol/(1 -P(so,B-‘So)) 

whenever the terms make sense. Setting B = [A + D + ap, - x] and P = (a - x), we 
have that 

1 (So, [A +D +ap,-x1-l So) 
-= l-(a-x)(S,,[A+D+ap,-xx]-‘So) x(x> 

=(S,,[A+D-(l-p,)x]-‘So). 

(6) 

It follows from (6) that x(x) is a differentiable decreasing function of x. It is also 
clear that x(x) > 0 for each x ( y. ; thus, it is positive for each x < To with some 
To > y. , defined by x(ro) = 0. This is sufficient to establish the following result [ 61: let 
X m+l=~(~,) with x0<% xm<to, m=O, 1, 24 then ~~~~~~~~~~~~~~~~~~~ 
The condition x, < To is equivalent to x(x,+ ,) > 0. If x’(x) < 1 on (x0, to), then 
y, = y, = yo. An alternative method, the min. max. method which was described in 
[5], enables one to obtain converging upper and lower bounds to y. even when 
x’(x)> 1. 

The results to this point are valid with an arbitrary p. such that (ty,po w) > 0 and, 
in fact, for the special case where A is tridiagonal (e.g., for the so-called step-ladder 
model in unimolecular reaction theory), p. can simply be taken as S(S, ), where S is 
the vector 1, 0, 0 ,... . 

We now consider the iterative sequence generated by 4(x), i.e., {x,} defined by 
X m+l = MJ with x0 such that x, < a,@ + D + ape). It is a standard result, again, 
that if p(x) < 1 on the interval containing {x,}, then x, + yo[7]. Since 

I$(x>l = I@,, [A + D + ap, -xl-’ DS,)l < a IlDS,Il/(a - x)~, 
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]$(x)] can be made arbitrarily, small by increasing a; here I(. I] .denotes the norm. 
Therefore, one can always obtain a convergent Ix,,,}. Furthermore, convenient bounds 
on ( y,, - x,] are available in terms of ]p(.z,)] [7]; however, here we show that if 
0 < a < a,(A), then x, T yO. 

It is clear from (4), using AS, = 0, that 

J(x) = a(&,, [Ad + D + ap, - x] - ’ PS,), 

where P= [A + D - (1 -p,,)a]. Now, (S,, PS,) = (S,, DS,) > 0 and for any u 
orthogonal to S,, (u, Pu) = (u, [A + D - a]#) > [a,(A) - a](u, u); this is sufficient to 
conclude that P > 0 [5 1. Hence P “* > 0 is well defined and commutes with 
[A + D + ap,], which results in 

6(x) = a(P1”So, [A + D + ap, - x] -’ P1’*So). (7) 

From (7) it follows that q(x) > 0, which is suIIicient to imply that x, T y0 provided 
that x0 < y,, [5]. 

It is pertinent to remark here that Newton’s method may also be used to approx- 
imate the fixed points of J(x) and x(x), i.e., y0 [5]. 

3. THE COMPUTATIONAL METHOD 

Since y,, is pathologically small, we can safely choose the first approximation 
x0 = 0. Equation (4) may then be written 

&Co) = a@,,, [A + D + cm,] -I DS,J= (So, f ), (8) 

where 

f=a[A+D+ap,]-IDS,,, (9) 

i.e., 

[A + D + ap,]f= aDS,. (10) 

Forming the scalar product of S, with (lo), we have 

(So, IA + D + ap,]f) = (So, Of I+ 4&J) = 4%,, W,), (11) 

where we have used the’fact that S, is the normalised eigenvector of A corresponding 
to a zero eigenvalue. From (8) and (1 l), we then get 

&P> = (So ,f ) = (So, D&J - (So, W/a. (12) 

This we have shown to be a lower bound to yO, and the corresponding upper bound, 
from (5), is $$I)/( 1 - @)/a); in the example we give below, where a = 1 and 
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y. z5 1o-5o, the upper and lower bounds are computationally indistinguishable. The 
power of this method depends upon the fact that we have reduced the eigenvalue 
problem to’an inversion, and that the inversion, Eq. (9), is stable. 

4. A SIMPLE EXAMPLE 

A model calculation was performed on the unimolecular dissociation of CO, at 
500°K. The energy-level spectrum was divided into 40 equally spaced grains, with 30 
of them below the reaction threshold, and appropriate ‘values were assigned to the 
elements of A and D [6]; the elements of A are proportional to the pressure p, but 
those of D are fixed. With the numerical values assumed, 39 of the eigenvalues of A 
spanned the range 1.3~ x 10’ to 6.6~ x 10’~s’, where p is the pressure in Torr; the 
remaining one is of course identically zero, with an eigenvector So whose elements 
are Zi”, where ci is the Boltzmann population in grain i at 5000K [6]. We chose to 
experiment with the value of a = 1 and a pressure range lo-’ <p < 10” Torr: thus a 
was always less than a,(A), whence J(O) is always a lower bound; note that the 
(i,j)th element of p. is simply fi:‘*n;“*. In the range lo-* <p < lop3 Torr, our 
calculated rate constant was strictly second order, with a numerical value of 3.024~ X 

10-46s-1, whereas in the range lo8 <p < 10” Torr, the rate constant was strictly 
constant at 8.960 x 10P4’s-‘. These limiting values are known to be correct, since 
they can be deduced analytically from the general properties of the theory of 
unimolecular reactions [6]. Moreover, throughout the pressure range lop5 <p < 10” 
Torr, 4(O) exhibited the correct fall-off behaviour and no difficulty was experienced in 
calculating the rate constant at any of these pressures. 

Some problems may be encountered at extremes of pressure. For example, at 
p = 10” Torr and a = 1, the elements of ap, become insignificant compared with the 
elements of A and the inversion of [A + D] fails: however, the correct high-pressure 
rate constant is recovered if a is increased to, say, lOlo, since the inversion is now 
stabilised by the presence of a significant ape term; note that at these high pressures, 
a value of a of 10” is still less than a,(A). On the other hand, at extremely low 
pressures, the elements of A will become insignificant compared with those of D, and 
a solution can only be obtained if sufficient computer word length is available; 
however, this problem does not usually arise in chemical kinetic calculations. Finally, 
we should point out that if the computing system or compiler available is one which 
counts underflows and terminates the execution of the program if “too many” 
underflows occur, then it is necessary to intercept these interrupts in the inversion 
routine: we have found the Choleski square root method [8] very convenient in this 
respect for the calculation off in Eq. (9). The number of underflows encountered is 
large, and depends upon the value of a that is chosen; however, we explored the 
behaviour of J(O) obtained from a fixed matrix [A + D] by choosing widely differing 
values of a, and found that the result was unaffected to at least 5 significant figures 
as the number of suppressed underflows was varied. 
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